Ejercicio 77



Corolarios del teorema del residuo

 Ejercicio 77

pag 121

A p u n t e s
Teorema del Residuo: "El residuo de dividir un polinomio entero y racional en x por un binomio de la forma bx - a se obtiene sustituyendo, en el polinomio dado, la x por a/b".
Corolario del Teorema del Residuo:  Un polinomio entero en xP(x), que se anula para  x = a/b, o sea que al sustituir la x por a/b en el polinomio el resultado es cero, esto es P(a/b) = 0, es divisible por bx - a.
Nota1: Se dice que una cantidad es divisible por otra cantidad si al dividir a la primera por la segunda el residuo es cero. El teorema del residuo establece que para hallar el resto de la división de un polinomio entero en x por un binomio de la forma bx - a, sin efectuar la división, basta con sustituir la x por a/b. Conjugando los dos conceptos anteriores se deduce la veracidad del Corolario.
Nota2: Si el divisor tiene la forma x - a, entonces para aplicar el Corolario se halla P(a) y, si P(a) = 0, se concluye que P(x) es divisible por x - a.
MathType 6.0 Equation

SOLUCIONES


 2
 3
 4

 

No hay comentarios.:

Publicar un comentario